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Introduction

Problem Statement

Definition: Let S be a set of points in d-dimensional real space. S is
an acute set if any three distinct points form an acute angle.

Question: What is the maximal cardinality (size, denoted as f (d)) of
an acute set in Rd?

In other words, what is the maximal cardinality of a subset of Rd such
that for any x , y , z ∈ S , 〈x − y , z − y〉 > 0?
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Introduction

Points form an Acute Set

A

B

C

D

E

•

•
•

•

•

Figure 1: S = {(0, 0, 0), (0, 1, 0.25), (0.75, 0.75,−0.75), (1, 0, 0.25), (1, 0.97, 0)}
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Introduction

Points do not form an Acute Set

A

B

C

D
E

•

•
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••

Figure 2: S = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (−2,−1/3, 0)}
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Introduction

Background

1972: Danzer and Grünbaum proposed the acute set problem, proved
that f (d) ≥ 2d − 1, conjectured that this bound was the sharpest
lower bound, and proved that f (d) < 2d

1983: Erdős and Füredi disproved the conjecture for the lower bound

and showed that f (d) ≥ 1

2

(
2√
3

)d

2011: Harangi improved the bound to f (d) ≥ c

(
10

√
144

23

)d

April 2017: Zakharov improved this bound to f (d) ≥ 2d/2

September 2017: Gerencsér and Harangi showed that
f (d) ≥ 2d−1 + 1, thus determining the growth rate of f (d)
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1972: Danzer and Grünbaum proposed the acute set problem, proved
that f (d) ≥ 2d − 1, conjectured that this bound was the sharpest
lower bound, and proved that f (d) < 2d
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1983: Erdős and Füredi disproved the conjecture for the lower bound

and showed that f (d) ≥ 1

2

(
2√
3

)d

2011: Harangi improved the bound to f (d) ≥ c

(
10

√
144

23

)d

April 2017: Zakharov improved this bound to f (d) ≥ 2d/2

September 2017: Gerencsér and Harangi showed that
f (d) ≥ 2d−1 + 1, thus determining the growth rate of f (d)

Sathwik Karnik MIT PRIMES Conference 2018 May 19, 2018 7 / 18



Introduction

Background
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Discrete Acute Set Problem

Motivation and Problem Statement

We consider the acute set problem in a d-dimensional unit hypercube.

Discrete Acute Set Problem: find the maximal cardinality (denote it
as h(d)) of an acute set of points on the d-dimensional hypercube
{0, 1}d .
Example in {0, 1}3:
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Bounds in Discrete Acute Set Problem

Improved Lower Bound for h(d)

{(0, 0, . . . , 0), (1, 1, . . . , 1, 0), . . . , (0, 1, . . . , 1)} form an acute set
with d + 1 points (called a simplex), resulting in h(d) ≥ d + 1

By concatenating points in an acute set in {0, 1}d
(S = {v0, v1, . . . , vh(d)−1}) to form points in {0, 1}3d , we find that

h(3d) ≥ (h(d))2, which results in a bound of h(d) ≥ 22
blog3 dc

Through a similar concatenation of points in an acute set in {0, 1}d
and two points in {0, 1}3 to form points in {0, 1}d+6, we find that
h(d + 6) ≥ 4h(d), which results in a bound of h(d) ≥ 2d/3, which is
stronger for larger dimensions
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Bounds in Discrete Acute Set Problem

Concatenation Example

Let v0 = (0, 0, 0), v1 = (1, 1, 0), v2 = (1, 0, 1), and v3 = (0, 1, 1) be
the points in an acute set in the 3-dimensional cube.

The point (v0, v0, v0) represents the point (0, 0, 0, 0, 0, 0, 0, 0, 0) in the
9-dimensional hypercube.

Here are 16 points in {0, 1}9 that form an acute set:

(v0, v0, v0), (v0, v1, v1), (v0, v2, v2), (v0, v3, v3)

(v1, v0, v1), (v1, v1, v2), (v1, v2, v3), (v1, v3, v0)

(v2, v0, v2), (v2, v1, v3), (v2, v2, v0), (v2, v3, v1)

(v3, v0, v3), (v3, v1, v0), (v3, v2, v1), (v3, v3, v2)

In general, when we concatenate 3 points to form an acute set,
observe that no two points of the three points are in the same
position in other concatenated points.
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Bounds in Discrete Acute Set Problem

Improved Upper Bound for h(d)

To understand the growth rate of h(d), we studied the upper bound
of h(d)

Observe that h(d) ≤ f (d) ≤ 2d

Note that adjacent points cannot be elements of the acute set. Thus,
h(d) ≤ 2d−1

Further improvement:

Consider a point P in the acute set and all points diagonally opposite
on a 2-face
The maximum average number of points in the acute set on a face is

1 +
2

d
, and there are (d − 1) · d · 2d−3 2-faces in a hypercube

After considering overcount, h(d) ≤
(

1 +
2

d

)
· 2d−2
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Future Work

Combinatorial Interpretation

A combinatorial interpretation of the acute set problem is that for any
three points x , y , and z in the acute set, there exists three positions
in these points so that one of the positions is {0, 0, 1} or {1, 1, 0},
another is {0, 1, 0} or {1, 0, 1}, and the other is {1, 0, 0} or {0, 1, 1}.

Example of an Acute Set:
(1, 1, 1)

(0, 0, 1)

(1, 0, 0)

Example of Points Not Forming an Acute Set:

(1, 0, 0, 1)

(0, 0, 1, 0)

(0, 0, 1, 0)

Sathwik Karnik MIT PRIMES Conference 2018 May 19, 2018 15 / 18



Future Work

Combinatorial Interpretation

A combinatorial interpretation of the acute set problem is that for any
three points x , y , and z in the acute set, there exists three positions
in these points so that one of the positions is {0, 0, 1} or {1, 1, 0},
another is {0, 1, 0} or {1, 0, 1}, and the other is {1, 0, 0} or {0, 1, 1}.
Example of an Acute Set:

(1, 1, 1)

(0, 0, 1)

(1, 0, 0)

Example of Points Not Forming an Acute Set:

(1, 0, 0, 1)

(0, 0, 1, 0)

(0, 0, 1, 0)

Sathwik Karnik MIT PRIMES Conference 2018 May 19, 2018 15 / 18



Future Work

Future Work

Potential combinatorial generalization: for any k points v1, v2, . . . , vk ,
there exists k positions such that there exists one of {0, 0 . . . , 0, 1} or
{1, 1, . . . , 1, 0}, {0, 0 . . . , 0, 1, 0} or {1, 1, . . . , 1, 0, 1}, . . . , and one of
{1, 0 . . . , 0, 0} or {0, 1, 1, . . . , 1}. What is the maximal size of such a
set?

Does the geometric interpretation of the discrete acute set problem
generalize, as well?

In other words, is it true that, given the combinatorial interpretation,
that any two k − 1 dimensional hyperplanes in the set of points form
an acute angle?
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